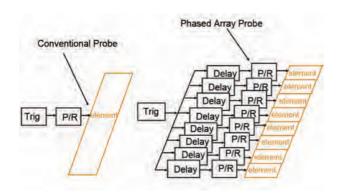
Phased Array&TOFD Probes

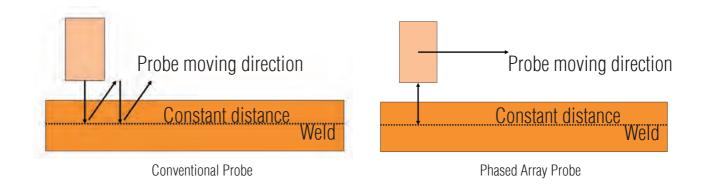


Phased Array Probe

One phased array probe consists of many small elements, each one can be pulsed on separately. The structure of the phased array probe is like putting many single element probes into one probe.

Advantage of Phased Array Probe

Small Size and Multi-channel


One small phased array probe can take place of multiple conventional probes to access some difficult-to-reach area.

For one phased array probe, multi groups of element and multi angles can be applied for scanning at the same time, fully covering the welding area and enhancing the inspection efficiency.

Faster Inspection Efficiency

Conventional UT adopts the raster scanning achieved by the connection of probe and encoder, which is an order of magnitude slower than the phased array technology with electronic scanning.

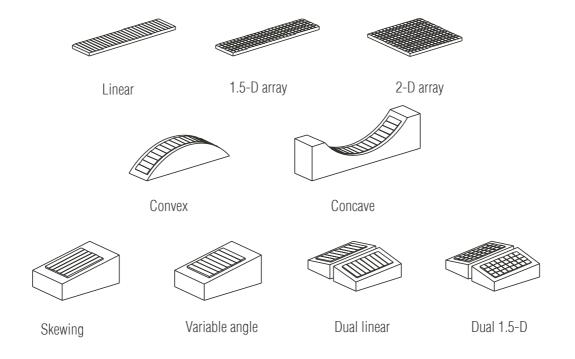
Higher Inspection Efficiency

Conventional probes adopts raster scanning, which is an order of magnitude slower than the phased array technology with electronic scanning.

SIUI can Provide a Variety of Probes for Different Kinds of Inspections

Custom Phased Array Probes

SIUI can produce custom phased array probes to suit specific applications and geometries.


For custom probe, please provide following info:

- Frequency
- Number of elements, pitch and elevation
- Probe type (angle beam, immersion, integrated wedge, matrix)
- Array shape (flat, curve)
- Cable jacket required
- Cable length
- Connector type
- Housing and/or dimension constraints
- Application
- Comparable UT single element transducer

Frequency	Number of		Pit	tch	Active aperture	
MHz	elements		mm		mm	
	X	Y	Х	Y	Х	Y
2.0	3	10	5	3	15	30
5.0	8	8	1	1	8	8

Custom Matrix Array Probe Specification

Standard Phased Array Probes

For Example

Electric Capacity Frequency Array Pitch Electric capacity each meter. **7.5**=7.5MHz Unit: mm **110**=110pF for one meter: **0.5**=0.5mm **50**=50pF for one meter. **Array Mode** Elevation Cable Length L=I inear Unit: mm Unit: m **C**=Convex **10**=10mm **V**=Concave 2.0=2 meters **Connector Type M**=Matrix Coupling Type N is coupled by wedge. I is coupled by T1= Tyco TC ZIF 260P immersion. E is coupled by integrated P1=0mni Connector **Element Number H1**=Hypertronics **128**=128 elements wedge. **D1**=DL-156P **D2**=DL-96P Cable Type **D5**=DL-260P P=PVC wrap **C1**=High Density 78 Way D-Type Metal armor and radiation proof wrap can be provided.

Other parameters can be added after the model name following the suffix form in "-".

Universal Probes

Small/ Medium/ Large-Size & Low Frequency Probes

Small-size Linear Array Probe

Medium-size Linear Array Probe

Large-size Linear Array Probe

Low Frequency Probe

Superior Features:

Sound Beam angle, focusing and scan step can be electronically controlled;

Wide scan coverage can be achieved by one single probe; Replaceable angle wedge and delay block, with customizable surface curvature;

Array pitch and elevation can be customized.

Typical Application

- Small-size Linear Array Probe
 --good for inspection on limited space;
- Medium-size Linear Array Probe
 --suitable for a wide range of applications;
- Large-size Linear Array Probe
 - --inspections of cracks on plate-type pieces;
- Low Frequency Probe
- --inspection on thick plates or noisy or granular material.

Probe Model	Frequency	Number of	Pitch	Active aperture	Housi	ng Dime (mm)	nsion				
	MHz	elements	mm	mm	L	W	Н				
		Small-size Linea	r Array Prob	e							
2.5L8-1.0-9	2.5	8	1	8	15	28	28				
4.0L16-0.5-9	4	16	0.5	8	15	28	33.5				
5.0L16-0.5-9	5	16	0.5	8	15	28	33.5				
5.0L16-0.6-10	5	16	0.6	9.6	17	28	33.5				
7.5L16-0.5-9	7.5	16	0.5	8	15	28	33.5				
10L16-0.5-9	10	16	0.5	8	15	28	33.5				
	Medium-size Linear Array Probe										
2.5L16-1.0-10	2.5	16	1	16	28	31	33				
5.0L32-0.5-10	5	32	0.5	16	28	31	33				
5.0L32-0.6-10	5	32	0.6	19.2	32	31	33				
7.5L32-0.5-10	7.5	32	0.5	16	28	31	33				
		Large-size Linea	r Array Prob	e							
5.0L64-1.0-10	5	64	1	64	84	36	36				
5.0L64-0.5-10	5	64	0.5	32	45	31	33				
5.0L64-0.6-10	5	64	0.6	38.4	52	31	33				
5.0L128-0.5-10	5	128	0.5	64	84	36	36				
7.5L64-1.0-10	7.5	64	1	64	84	36	36				
7.5L128-0.5-10	7.5	128	0.5	64	84	36	36				
		Low Frequen	cy Probe								
2.0L32-1.0-10	2	32	1	32	45	31	33				
1.5L16-2.0-10	1.5	16	2	32	45	31	45				

The probes are equipped with standard 2m cable.

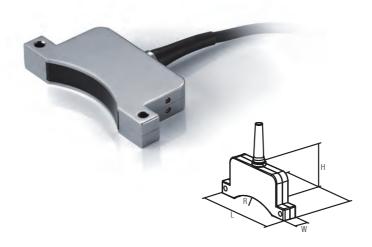
Immersion Linear Array Probe

Superior Features:

Sound Beam angle, focusing and scan step can be electronically controlled;

Wide scan coverage can be achieved by one single probe;

*Probe size and outer housing can be customized.


Typical Application:

Suitable for underwater inspection;

Inspection of thin plate or tubing (steel, aluminum, or other); Composite inspection for delamination;

Inline thickness gaging;

Automated scanning.

Immersion Curved Array Probe

Superior Features:

Adopt immersion method for inspection;

Sound Beam angle, focusing and scan step can be electronically controlled;

Wide scan coverage can be achieved by one single probe; The curvature radius of curved probes can be customized; *Different parameters can be customized.

Typical Application:

Suitable for underwater inspection;

Inspection of tubing;

Inspection of carbon fiber reinforced polymers (CFRP) corners; Inspection of composite materials for delamination.

Small-size immersion curved array probe

Large-size immersion curved array probe

	Frequency	Number	Pitch	Active
Probe Model		of		aperture
	MHz	elements	mm	mm
	Immersion Li	near Array Probe	;	
5.0L64-0.6-10-l	5	64	0.6	38
5.0L64-1.0-10-l	5	64	1	64
7.5L128-0.39-6-l	7.5	128	0.39	50
7.5L128-0.6-6-I	7.5	128	0.6	76.8
2.0L64-0.6-10-l	2.0	64	0.6	64
	Immersion Cu	irved Array Prob	9	
3.5V128-0.6-10-R65-I	3.5	128	0.6	/
3.5V64-1.6-12-R65-I	3.5	64	1.6	/
5.0V64-1.0-10-R40-I	5.0	64	1.0	/
10.0V128-0.6-10-R40-I	10.0	128	0.6	/

The probes are equipped with standard 2m cable. Housing dimension can be customized.

High Penetration Probe & Small Footprint Probe

High Penetration Probes

Superior Features:

Good resolution and high penetration;

Replaceable angle wedge and delay block, with customizable surface curvature;

Array pitch and elevation can be customized.

Typical Application:

Detection of flaws and sizing; Inspections of defects in forgings; Inspection on noisy or granular material.

Small Footprint Probe

Superior Features:

Compact size;

Cable connector can come out from either the side or the top; Replaceable angle wedge and delay block, with customizable surface curvature:

Array pitch and elevation can be customized.

Typical Application:

Inspection on limited space;
Detection of flaws and sizing;
Inspection on reduced probe access, or with surfaces with complex geometry.

Probe Model	Frequency	Number of	Pitch	Active aperture	Housi	ng Dime (mm)	nsion			
	MHz	elements	mm	mm	L	W	Н			
High Penetration Probe										
2.5L16-1.2-20	2.5	16	1.2	19.2	40	48	29			
5.0L32-0.6-20	5	32	0.6	19.2	40	48	29			
		Small Footpr	int Probe							
5.0L10-0.6-6	5	10	0.6	6	13	10	23			
7.5L10-0.6-6	7.5	10	0.6	6	13	10	23			
10.0L10-0.6-6	10.0	10	0.6	6	10	10	23			

The probes are equipped with standard 2m cable.

Wedge for Phased Array Probe

Superior Features:

Variable angles in steel for selection.
Wedges with different specifications can be made.
Compatible with crawler.
Anti-wear structure design are available.

Wedges with curvature can be made on request.

For Example

Active Aperture

64=Compatible phased array probe is 64mm. **Active Aperture**= Pitch × Elements

Probe Mounting

N=Normal

L=Skew (in lateral direction)

Refracted Angle in Steel

55=55°

Wave Type

S=Shear wave in steel **L**=longitudinal wave in steel

Irrigation

I=Irrigation

Note: without "I" is non-irrigation

Curvature Type

AOD, COD, AID, CID are available.

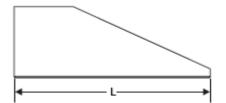
AOD=Axial outside diameter

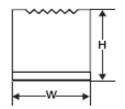
COD=Circumferential outside diameter

AID=Axial inside diameter

CID=Circumferential inside diameter

Pipe Diameter


Pipe diameter in mm.


AOD and COD is the outside diameter.

AID and CID is the inside diameter.

80=80mm

Wedge	Description	X	XT	Z	Velocity	Refracted	L	W	Н
Model	Dooription	mm	mm	mm	m/s	Ang	mm	mm	mm
			Standar	rd Wedge					
64N00L-20	20mm delay block	73.5	10.5	20	2360	0°	84	35.6	20
64N00L-40	40mm delay block	73.5	10.5	40	2360	0°	84	35.6	40
64N55S	30-70° shear wave angle block	108.67	8.93	14.48	2360	55°	117.6	36	58.5
16N00L-20	20mm delay block	21.75	6.25	20	2360	0°	28	31	20
16N00L-40	40mm delay block	21.75	6.25	40	2360	0°	28	31	40
16N55S	30-70° shear wave angle block	34.94	5.06	9.74	2360	55°	40	31	22.5
8N00L-20	20mm delay block	11.25	3.75	20	2360	0°	15	28	20
8N00L-40	40mm delay block	11.25	3.75	40	2360	0°	15	28	40
8N55S	30-70° shear wave angle block	21.69	3.31	8.4	2360	55°	25	28	15
40N00L-20	20mm delay block	44.9	7.1	20	2360	0°	52	31	20
40N00L-40	40mm delay block	44.9	7.1	40	2360	0°	52	31	40
40N55S	30-70° shear wave angle block	73.24	7.76	13.64	2360	55°	81	31	41.5
32N00L-20	20mm delay block	38	7	20	2360	0°	45	31	20
32N00L-40	40mm delay block	38	7	40	2360	0°	45	31	40
32N55S	30-70° shear wave angle block	64.44	7.56	13.49	2360	55°	72	31	37.5
20N00L-20	20mm delay block	25.3	6.7	20	2360	0°	32	31	20
20N00L-40	40mm delay block	25.3	6.7	40	2360	0°	32	31	40
20N55S	30-70° shear wave angle block	52.58	5.42	18.94	2360	55°	58	31	35.5
10N00L-20	20mm delay block	13	4	20	2360	0°	17	28	20
10N00L-40	40mm delay block	13	4	40	2360	0°	17	28	40
10N55S	30-70° shear wave angle block	27.26	3.24	8.35	2360	55°	30.5	28	17.5

High Temperature Wedge

High temperature wedge enables testing on surface up to 200 $^{\circ}\!\!\mathrm{C}$. Maximum contact time is 10 seconds. Cool to ambient before reuse.

Wedge	Description	X	XT	Z	Velocity	Refracted	L	W	Н
Model	Description	mm	mm	mm	m/s	Ang	mm	mm	mm
		High 1	Tempera	ture Wedg	е				
64N00L-20-H	20mm Delay Block	73.5	10.5	20	2590	0°	84	35.6	20
64N00L-40-H	40mm Delay Block	73.5	10.5	40	2590	0°	84	35.6	40
16N00L-20-H	20mm Delay Block	21.75	6.25	20	2590	0°	28	31	20
16N00L-40-H	40mm Delay Block	21.75	6.25	40	2590	0°	28	31	40
8N00L-20-H	20mm Delay Block	11.25	3.75	20	2590	0°	15	28	20
8N00L-40-H	40mm Delay Block	11.25	3.75	40	2590	0°	15	28	40
40N00L-20-H	20mm Delay Block	44.9	7.1	20	2590	0°	52	31	20
40N00L-40-H	40mm Delay Block	44.9	7.1	40	2590	0°	52	31	40
32N00L-20-H	20mm Delay Block	38	7	20	2590	0°	45	31	20
32N00L-40-H	40mm Delay Block	38	7	40	2590	0°	45	31	40
20N00L-20-H	20mm Delay Block	25.3	6.7	20	2590	0°	32	31	20
20N00L-40-H	40mm Delay Block	25.3	6.7	40	2590	0°	32	31	40
10N00L-20-H	20mm Delay Block	13	4	20	2590	0°	17	28	20
10N00L-40-H	40mm Delay Block	13	4	40	2590	0°	17	28	40

Curved Wedge

All the wedge models available now can be customized with curvature.

Irrigation Wedge

Water is used as couplant; Suitable for automatic inspection. Conventional wedges with surface curvature can be made based on requirement.

Wedge	Description	Х	XT	Z	Velocity	Refracted	L	W	Н		
Model	Description	mm	mm	mm	m/s	Ang	mm	mm	mm		
	Irrigation Wedge										
8N55S-I	30-70° shear wave angle block	21.69	3.31	8.4	2360	55°	25	39	15		
8N00L-20-I	20mm Delay Block	25.25	9.75	20	2360	0°	35	28	20		
8N00L-40-I	40mm Delay Block	25.25	9.75	40	2360	0°	35	28	40		
16N55S-I	30-70° shear wave angle block	34.94	5.06	9.67	2360	55°	40	43	22.5		
16N00L-20-I	20mm Delay Block	43.5	4.5	20	2360	0°	48	31	20		
16N00L-40-I	40mm Delay Block	43.5	4.5	40	2360	0°	48	31	40		

Crawler for Phased Array

Different crawlers compatible with PA probes can be provided by SIUI.

Example of Phased Array Probe Test Report

Probe:5.0L64-1.0-10 Serial Number:*****

Probe Information

Frequency: 5.0MHz Probe Type: Linear Array Element Count: 64 Cable Length: 2.0M

Active Area Dimension

Length: 64mm Elevation: 10mm Pitch: 1.0mm

Matching Medium: Rexolite

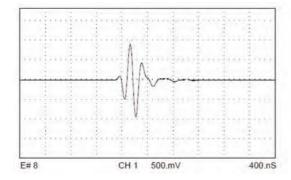
Probe Conformance Summary

Overall Vp-p Sensitivity: 2.39dB (<=3dB) Average Center Frequency: 5.13MHz(5.0MHz+/-10%) Average -6dB Bandwidth: 78.46%(>=60%)

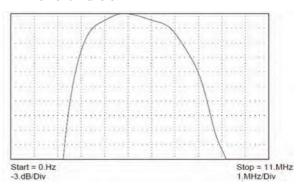
Probe Test Condition

Instrument Model: 5052UA Pulse Voltage: 120V Pulse Type: Negative Dumping: 50ohm

Energy: 1


Target Medium: Rexolite Target Type: 25.4mm Plate

Probe Test Result


Parameters	Unit	Min	Max	Mean
Peak-Peak Sensitivity	dB	-47.61	-45.22	-46.79
-20dB Pulse Length	nS	582.4	636	605.23
-6dB Center Frequency	MHz	5.07	5.25	5.13
-6dB Bandwidth	%	74.59	80.39	78.46

Probe Test Graph

1. Element Waveform:

2. Element Waveform FFT:

SIUI can Provide

A series of phased array probes compatible with different phased array flaw detectors; Customization of phased array probes and wedges with different specifications.

TOFD Probes

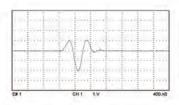
Ordering Information:

T2-12L-UN

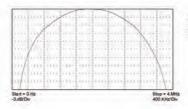
TOFD Frequency-

Screw Thread Unit:UN Connector Type: L-LEMO 00,MD-Microdot

Crystal dimension Φ 12



LEMO 00 Connector


Microdot Connector

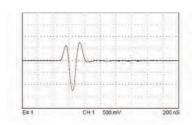
Probe	Frequency	Crystal Diameter D1	Max. Pulse Voltage	Housing Dimension	Screw Thread Unit	Compatible Wedge																																		
	MHz	mm	V	mm																																				
T2-12L-UN	2	12	-800	D2:18																																				
12-12L-UN	2	12		H:32																																				
T2-14L-UN	2	1/		000	000	-800	D2:18																																	
12-14L-011	2	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	-000	4 -000	-000	H:32	UN:11/16-24UNEF	TFD-45/60/70-UN
T2.25-12MD-UN	0.05	LINI O DE	MD-UN 2.25	12	-800	D2:18	UN.11/10-24UNLI	11 D-43/00/70-01V																																
12.25-121110-011	2.23	12	-000	H:22.3																																				
T2.25-14MD-UN	2.25	14	-800	D2:18																																				
12.20-14IVID-UN	2.20	14	-000	H:22.3																																				

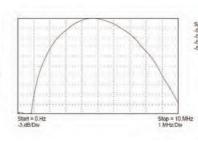
Test Report: T2-14L-UN 9mm plexiglass test block

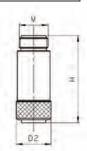
1	
IF	
-	

Probe	Frequency	Crystal Diameter D1	Max. Pulse Voltage	Housing Dimension	Screw Thread Unit	Compatible Wedge		
	MHz	mm	V	mm				
T2-10L-UN	2	10	-800	D2:18				
12-101-011	2	10	H:32					
T2.5-10L-UN	2.5	10	-700	D2:18				
12.5-10L-01N	2.0	10	-700 -700	H:32				
T3.5-10L-UN	3.5	10		D2:18 H:32				
13.5-101-011	3.3	10	-700					
T5-10L-UN	5	5	5	10	-500	D2:18	UN:11/16-24UNEF	TFD-45/60/70-UN
13-101-011				J	J	10	-300	H:32
T2.25-10MD-UN	2.25	10	-800	D2:18				
12.23-101010-010	2.20	10	-000	H:22.3				
T3.5-10MD-UN	3.5	10	-700	D2:18				
13.3-101010-011	ა.ა	10	-700	H:22.3				
T5-10MD-UN	5	10	-500	D2:18				
10-101010-010	J	10	-500	H:22.3				

Test Report: T3.5-10L-UN 9mm plexiglass test block

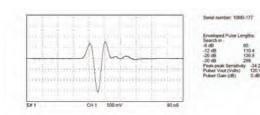


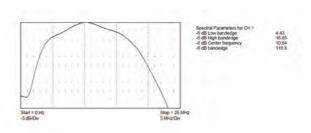


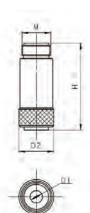


Probe	Frequency	Crystal Diameter D1	Max. Pulse Voltage	Housing Dimension	Screw Thread Unit	Compatible Wedge		
	MHz	mm	V	mm	Unit			
T4-6L-UN	4	6	-500	D2:11.5				
				H:28.7	_			
T5-3L-UN	5	3	-500	D2:11.5				
10 02 011	- O	Ŭ	000	H:28.7				
T5-6L-UN	5	6	-500	D2:11.5				
13-0L-01V	3	0	-300	H:28.7				
TZ C OL LINI	7.5	0	200	D2:11.5				
T7.5-3L-UN	7.5	3	-300	H:28.7				
		_	-300	-300	D2:11.5			
T7.5-6L-UN	7.5	6			-300	H:28.7		
TO OF ON AD LINE	0.5	0	000	D2:11.2	UN:3/8-32UNEF	TFB-45/60/70-UN		
T2.25-6MD-UN	2.5	6	-800	H:19.7				
TO E CMD LIN	0.5	C	700	D2:11.2				
T3.5-6MD-UN	3.5	6	-700	H:19.7				
TE OMED LINE	Г	0	F00	D2:11.2				
T5-3MD-UN	5	3	-500	H:19.7				
TE CMD UNI	F	C	F00	D2:11.2	1			
T5-6MD-UN	5	6	-500	H:19.7				
TZ C OMD LIN	7.5	0	000	D2:11.2				
T7.5-3MD-UN	7.5	3	-300	H:19.7				
TZ C CMD IIN	7.5	C	200	D2:11.2	1			
T7.5-6MD-UN	7.5	6	-300	H:19.7				

Test Report: T5-6L-UN 9mm plexiglass test block







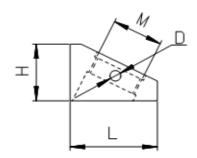
Probe	Frequency	Crystal Diameter D1	Max. Pulse Voltage	Housing Dimension	Screw Thread	Compatible Wedge	
	MHz	mm	V	mm	Unit		
T10-3L-UN	10	3	-300	D2:11.5			
110-31-011	10	3	-300	H:28.7			
T10-6L-UN	10	6	-300	D2:11.5		TFC-45/60/70-UN	
TTU-OL-UN	10	0	0 -300		H:28.7		
T15-3L-UN	15	3	-200	D2:11.5			
110-31-011	10	3	-200 H:	H:28.7	UN:3/8-32UNEF		
T10-3MD-UN	10	3	-300	D2:11.2	UIN.3/0-32UINLI	11 0-43/00/10-011	
110-31010-010	10	3	-300	H:19.7			
T10-6MD-UN	10	6	-300	D2:11.2			
ווט-טועוט-טוע			H:19.7				
T15-3MD-UN			-200	D2:11.2			
ווט-טועוט-טוע	10	J	-200	H:19.7			

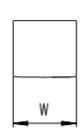
Test Report: T10-3L-UN 9mm polystyrene test block

SIUI can Provide

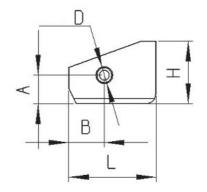
A series of TOFD probes compatible with different TOFD flaw detectors; Customization of TOFD probes and wedges with different specifications.

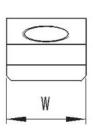
Wedge for TOFD Probe


Ordering Information:

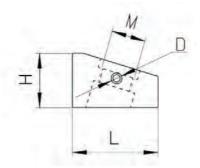


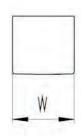
Non-irrigation Wedge




Wedge	Tuno	Velocity		L	W	Н	D	Screw Thread
Model	Туре	m/s	Angle in Steel	mm	nm mm		mm	Unit
TFB-45-UN		2730	45	24	16	16	3	
TFB-60-UN	Brass	2730	60	24	16	16	3	
TFB-70-UN		2730	70	24	16	16	3	UN:3/8-32UNEF
TFC-45-UN		2360	45	24	16	14.6	3	UIN.3/0-32UINEF
TFC-60-UN	Longitudinal Wave Wedge	2360	60	24	16	14.6	3	
TFC-70-UN	vveuge	2360	70	24	16	14.6	3	
TFD-45-UN		2730	45	31	24	21.5	3	
TFD-60-UN		2730	60	31	24	21.5	3	UN:11/16-24UNEF
TFD-70-UN		2730	70	31	24	21.5	3	

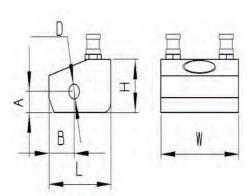
Short Flank Non-irrigation Wedge





Wedge	Tuno	Velocity	Refracted	L	W	Н	D	Screw Thread
Model	Туре	m/s	Angle in Steel	mm	mm	mm	mm	Unit
TFG-45-UN		2730	45	17.5	16	12.3	3	
TFG-60-UN	Resins	2730	60	17.5	16	12.3	3	
TFG-70-UN	Longitudinal Wave	2730	70	17.5	16	12.3	3	LINIO/O COLINEE
TFH-45-UN	Wedge	2360	45	17.5	16	12.3	3	UN:3/8-32UNEF
TFH-60-UN		2360	60	17.5	16	12.3	3	
TFH-70-UN		2360	70	17.5	16	12.3	3	

Irrigation Wedge



Wedge Model	Туре	Velocity	Refracted Angle in Steel	L	w	Н	Outer Aperture D	Inner Aperture D	Screw Thread Unit
Model		m/s	Allyle III Steel	mm	mm	mm	mm	mm	
TFB-45-UN-I		2730	45	20	32	13	6	3	
TFB-60-UN-I		2730	60	20	32	13	6	3	
TFB-70-UN-I		2730	70	20	32	13	6	3	LINI-O /O OOLINEE
TFC-45-UN-I	Resins	2360	45	20	32	12.5	6	3	UN:3/8-32UNEF
TFC-60-UN-I	Longitudinal	2360	60	20	32	12.5	6	3	
TFC-70-UN-I	Wave Wedge	2360	70	20	32	12.5	6	3	
TFD-45-UN-I		2730	45	30.5	32	18	6	3	
TFD-60-UN-I		2730	60	30.5	32	18	6	3	UN:11/16-24UNEF
TFD-70-UN-I		2730	70	30.5	32	18	6	3	

Short Flank Irrigation Wedge

Wedge Model	Туре	Velocity	Refracted Angle in Steel	L	w	Н	Outer Aperture D	Inner Aperture D	Screw Thread Unit
		m/s	Allyle III Steel	mm	mm	mm	mm	mm	
TFG-45-UN-I		2730	45	17.5	22	11.2	3	2	
TFG-60-UN-I	Resins	2730	60	17.5	22	11.2	3	2	
TFG-70-UN-I	Longitudinal	2730	70	17.5	22	11.2	3	2	UN-2/0 20UNEE
TFH-45-UN-I	Wave Wedge	2360	45	17.5	22	10.6	3	2	UN:3/8-32UNEF
TFH-60-UN-I		2360	60	17.5	22	10.9	3	2	
TFH-70-UN-I		2360	70	17.5	22	10.9	3	2	

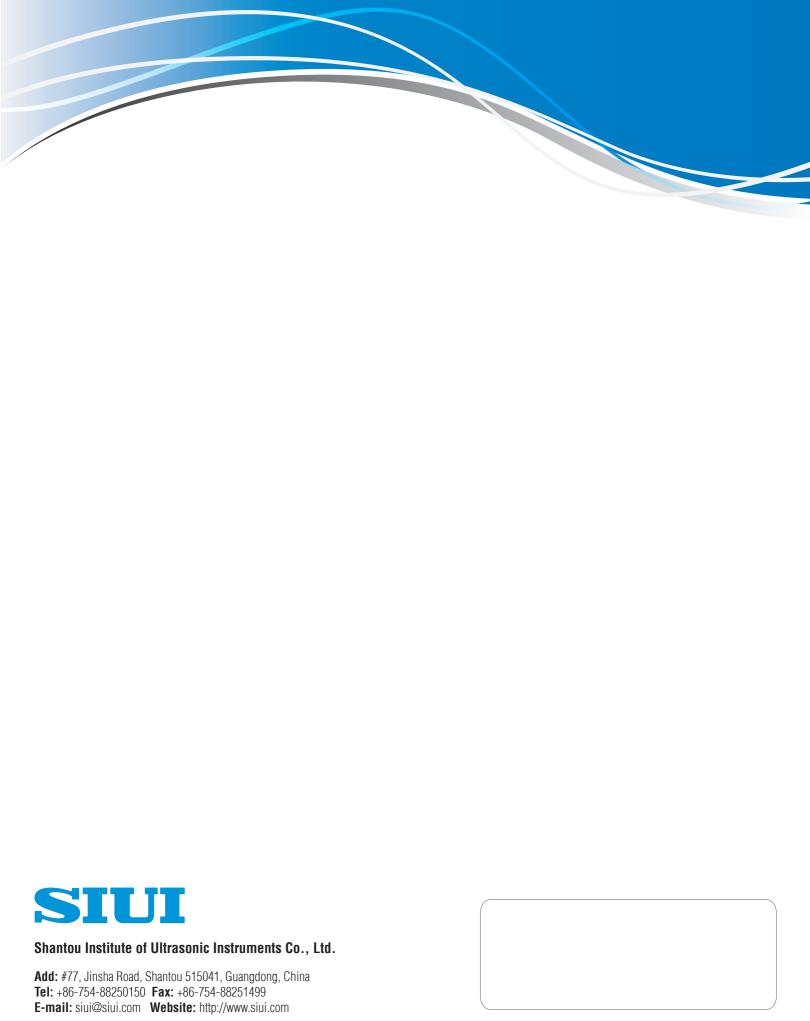
Crawler for TOFD

Different crawlers compatible with TOFD probes can be provided by SIUI.

TOFD Probe Selection (Based on ASTM E2373-04)

Probe selection shall be based on the application requirements. The following tables provide initial recommended probe parameters for specified thickness ranges in ferritic steels. For austenitic or other attenuative materials, nominal frequencies normally need to be reduced and element sizes increased.

Table 1 For Steel Thickness Ranges up to 75 mm (3 in.)


Nominal Wall Thickness	Nominal Frequency	Element Size	Recommended Angles
mm(in.)	MHz	mm(in.)	
<12 (0.375)	10 to 15	2 to 6 (0.08 to 0.25)	60 to 70°
12 to < 35 (0.375 to 1.4)	5 to 10	2 to 6 (0.08 to 0.25)	50 to 70°
35 to < 75 (1.4 to 3)	2 to 5	6 to 12 (0.25 to 0.5)	45 to 65°

For thickness ranges in steel 75 to 300 mm, the beam divergence from a single element is not likely to provide sufficient intensity for good detection over the entire thickness. For thickness 75 mm (3 in.) and greater (in steel) the examination piece shall be divided into multiple zones. For thickness 75 mm (3 in.) and greater (in steel) and when required in smaller thickness, sensitivity targets shall be placed in a reference block at least at 25% and 75% through thickness in each zone to verify that there is adequate beam coverage for the multiple zone technique used.

Table 2 For Steel Thickness Range 75 mm (3 in.) to 300 mm (12 in.)

Wall Thickness Zone	Nominal Frequency	Element Size	Nominal Angles	
mm(in.)	MHz	mm(in.)		
<35 (0 to 1.4)	5 to 10	2 to 6 (0.08 to 0.25)	50 to 70°	
35 to < 100 (1.4 to 4)	2 to 7.5	6 to 12 (0.25 to 0.5)	45 to 65°	
100 to < 300 (4 to 12)	2 to 7.5	6 to 12 (0.25 to 0.5)	45 to 65°	

On thick sections requiring more than one TOFD pair the lateral wave or back-wall signal may not always be visible. Therefore, provision in the linearizing algorithms must be made to permit inputs of other parameters instead of the lateral and back-wall signal positions. For wall thickness less than 75 mm (3 in.), technique qualifications may require they too be divided into smaller ranges with each range addressed by a dedicated TOFD pair.

